Nutanix Cloud Clusters (NC2) on Azure: Solution architecture and Azure network configuration

This guide covers NC2 concepts and demonstrates how to configure an Azure network environment for deploying Nutanix Cloud Clusters (NC2) on Azure. While NC2 can be deployed quickly and easily through the NC2 portal inclusive of the creation of required VNets, subnets, and other Azure resources—this method may impose limitations on post-deployment modifications.

For instance, if the VNets are created via the NC2 portal, it may not be possible to transition a non-redundant configuration into a redundant or scale-out configuration. To address this, this guide provides step-by-step instructions for manually creating the necessary Azure network resources. Additionally, it highlights key considerations to ensure a smooth and successful deployment process.

Single vs. Scale-out Flow Gateway (FGW)

North-South traffic flow for workloads / User VMs (UVMs) on NC2 on Azure goes via one or several Flow Gateway (FGW) VMs. Since all outbound UVM traffic goes through these VMs, please select the number required based on the throughput you need for the workloads on your NC2 cluster. There are two types of FGW which support 10Gbps and 16Gbps of throughput each respectively.

These FGW VMs are not deployed on NC2 on Azure. Instead they are deployed as Azure native VM instances. Each FGW connects to an External and Internal Azure subnet. The NC2 cluster is set to send all external-facing traffic over Equal-cost Multipath (ECMP) with these FGW VMs as the next hop.

These FGW’s can be deployed in single or scale-out mode. As would be expected, single implies the FGW is a single point of failure. However, the health of the FGW is continuously monitored by the NC2 portal and it will be re-provisioned in case it malfunctions.

For scale-out, or redundant mode, two, three or a max of four FGW VMs are deployed in an active/active formation where traffic can flow through any and all of the VMs.

The above screenshot is from the NC2 portal where from the “Settings” menu we have highlighted the “Flow Gateway” tab to allow us to view and update FGW and other network related settings.

BGP speaker VMs

When scale-out FGW is selected, routing shifts from using static routes (UDR) to Border Gateway Protocol (BGP). Two BGP VMs will be automatically deployed if the FGW configuration changes from single to scale-out and those BGP VMs will need an Azure Route Server (ARS) to talk to.

Each FGW uses two BGP sessions on the ARS which the BGP VMs are paired with. Since the soft BGP session limit for ARS is 8, please ensure your ARS have sufficient sessions available when scaling out your FGW configuration.

Azure quotas

Prior to deploying it is good practice to verify that Azure subscription isn’t running out of the type of resources which will be required for the NC2 on Azure deployment. This includes the ARS BGP sessions mentioned in the section above as well as the FGW VM types, vCPU, memory and storage.

The small FGW VMs are of type Standard_D4v_4, the large FGW VMs are Standard_D32_v4 and the two BGP VMs are of type “Standard_D4_v4 type” (4 vCPUs and 16 GiB mem).

Quotas can be checked in the Azure console here: https://portal.azure.com/#view/Microsoft_Azure_Capacity/QuotaMenuBlade/~/myQuotas

VNets and subnets

The bare minimum amount of VNet’s required to deploy NC2 on Azure is two, but you likely need more. For example, having a Hub VNet for routing traffic between on-prem and Azure as well as between VNet’s. We will look at two configurations in this post: ExpressRoute and S2S VPN. Note that all VNet’s need to be peered in a mesh fashion.

The VNet’s which are always required are the Cluster VNet for the bare metal cluster nodes on which NC2 is deployed as well as the Prism Central VNet which is used by the Prism Central management VM(s).

Both the bare-metal cluster nodes and the Prism Central management VM(s) require subnets delegated to the MS bare.metal service to function. Azure restricts the number of bare.metal subnets in a VNet to one. That forces us to create two VNet’s with a bare.metal delegated subnet each.

The FGW VMs need two subnets: One Internal for connecting to the NC2 network controller and one External for connecting to the outside world. Additionally, the BGP speaker VMs need a subnet for themselves too. That brings the number of subnets up to three. In an ExpressRoute environment these subnets can be co-hosted in the Prism Central VNet. However, in a S2S VPN environment we need to create a third VNet to host these resources. Let’s refer to the third VNet as the FGW VNet.

Please see the below CIDR ranges as guidance only. Always refer to the official documentation for the latest updates.

The NC2 portal will complain if required subnets aren’t available for deployment. In this example the VNet lacks a subnet delegated to the bare.metal service.

NAT Gateways

The NC2 cluster, FGW VMs and other resources need to be able to communicate with the NC2 portal as well as various other endpoints outside the NC2 environment. These are detailed in the prerequisites part of the user guide. NAT Gateways are required to provide that internet-facing access and the NC2 portal will check that these are present during deployment. Deploying NC2 without NAT Gateways is possible but necessitates reaching out to Nutanix support to disable the NC2 portal check prior to deploying. In that case internet access would need to be provided through a Network Virtual Appliance (NVA) and vWAN. Please refer to the NC2 on Azure networking best practices guide for more detail.

“fastpathenabled”: Note that at the time of writing (December 19th 2024) the NC2 portal requires every NAT Gateway used with NC2 to have the “fastpathenabled” tag set to “true” for deployment to proceed. The tag can be added to existing NAT Gateways and doesn’t have to be present at time of NAT GW creation.

Below is an example of an error where one of the NAT Gateways used doesn’t have this tag configured.

Custom DNS server settings

Prior to deploying, please update the DNS server settings on each VNet to be used with NC2 to replace the Default (Azure-provided) DNS with a custom DNS server. In this example we use the Google 8.8.8.8 and 8.8.4.4 servers, but other DNS resolvers can be used too, including private DNS servers – provided they can also resolve all required public endpoints. Note that deployments to VNets with the Default DNS server configured will fail.

Solution architecture diagrams

The Azure VNets are prefixed with “Azure” and on the bottom right there are two Flow Virtual Networking (FVN) VPCs prefixed with “FVN”. The FVN components are all created on top of the NC2 cluster and aren’t directly visible in the Azure management console. There are many more ways of configuring NC2 on Azure, but those are out of scope for this blog post. Please refer to the documentation for more detail.

ExpressRoute

As discussed above, the ExpressRoute option we have the benefit of co-hosting the FGW and BGP subnets in the Prism Central VNet.

Site-to-Site VPN

For the S2S VPN option we add the FGW VNet which will be used to host the FGW internal, external and the BGP subnets.

VNet peerings

When peering your VNets, please ensure to do a full mesh, as is show in the diagrams. In other words – Every VNet need to be peered with every other VNet.

When peering from the Hub VNet, please use the following settings:

When peering from one of the other VNets (Cluster, Prism Central, FGW) to the Hub VNet, please use the following settings:

Summary and conclusion

In this blog post, we explored the foundational concepts of NC2 on Azure networking and presented solution architectures for two key use cases: ExpressRoute and Site-to-Site (S2S) VPN. We highlighted the required configurations, potential challenges, and important considerations.

By combining this guide with the official documentation, we aim to provide a clear path for manually creating Azure network infrastructure in preparation for an NC2 deployment.

We hope you found this information helpful. In our next post, we will dive deeper into the BGP component and demonstrate how to route traffic for overlay no-NAT networks. Stay tuned!

Links and references

Disaster Recovery with NC2 on AWS Pilot Light cluster + Amazon S3

Configuring a Disaster Recovery (DR) from on-premises to Nutanix Cloud Clusters (NC2) on AWS is straight-forward and can provide significant benefits for those responsible for ensuring Business Continuity. With a Pilot Light cluster this can even be done for workloads with two different levels of Recovery Time Objective (RTO) while saving on costs by minimizing NC2 cluster size during normal operations.

This type of DR configuration leverages Nutanix MST, or Multicloud Snapshot Technology.

Why use a Pilot Light cluster?

Workloads can all be important and vital to recover in case disaster strikes, but may have different requirements when it comes to how quickly they must be back online again. For applications and services with short recovery time windows, simply configure replication from on-premises to a small NC2 on AWS cluster using the Nutanix built-in DR tools.

For workloads which are fine with a slightly longer RTO, save on running costs by replicating them to Amazon S3. In case of disaster those workloads can be recovered from S3 to the NC2 on AWS cluster. This brings benefits in the ability to keep the NC2 on AWS cluster at a small and cost-efficient size during normal conditions, with the ability to scale out the cluster if there is need to recover workloads from S3.

Zero-compute option

There is additionally possible to configure a Zero-compute DR strategy with NC2 on AWS in which there is no NC2 cluster and the on-premises environment replicate data directly into Amazon S3, however that will be covered in a separate blog post.

Zero-compute DR offers even lower costs than Pilot Light since there is no need to deploy an NC2 cluster unless there is a disaster. However, it will increase RTO because the NC2 infrastructure need to be provisioned. Therefore, Zero-compute is cheaper from a running-costs perspective, but may incur higher costs to the business during a DR event due to the longer time required to deploy and configure the recovery cluster.

Solution architecture

The below diagram shows how it is possible to replicate both to Amazon S3 as well as to the NC2 on AWS cluster. Both with different RPO times.

Versions used

For this deployment we use the following versions:

EntityVersion
NC2 on AWS Prism Centralpc.2024.3
NC2 on AWS AOS7.0
On-premises Prism Centralpc.2024.2
On-premises AOS6.8.1 (CE 2.1)

Deployment steps

Configuring a Pilot Light cluster can be done in just a few hours. For the purpose of this blog post we have gone through the following steps:

Step 1: Deploy an NC2 on AWS cluster and enable DR

This can be done with a few clicks in the NC2 portal. Either deploy into an existing AWS VPC or create new resources during cluster deployment. If an existing VPC with connectivity to on-prem is used it will make setting things up even faster since routing is already configured.

Navigate to the Prism Central settings menu and enable Disaster Recovery as shown:

Step 2: Add connectivity between on-prem and AWS (if not already configured)

Configure Direct Connect or a S2S VPN to link the on-premises Nutanix cluster environment with the AWS VPC holding NC2 on AWS.

Step 3: Create an S3 bucket to store replicated data

Create an S3 bucket which can be accessed from the NC2 on AWS environment. Make sure to give it a name starting with “nutanix-clusters”. You can add on something in addition to keep buckets separate. In this example we use “nutanix-clusters-pilotlight-jwr” as the bucket name.

If not already created, create a user with full access to this bucket and make note of the Access and Secret Access keys as they are used in the next step. An example of a policy which gives full access to our bucket can be found below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "FullAccessForMstToSpecificS3Bucket",
            "Effect": "Allow",
            "Action": [
                "s3:*"
            ],
            "Resource": [
                "arn:aws:s3:::nutanix-clusters-pilotlight-jwr",
                "arn:aws:s3:::nutanix-clusters-pilotlight-jwr/*"
            ]
        }
    ]
}

Step 4: Configure MST on Prism Central in NC2 on AWS

MST will deploy a number of Virtual Machines and this deployment requires us to provide three IP addresses on the AWS native VPC CIDR range.

If NC2 was deployed with AWS native networking, simply provide IP addresses outside of the DHCP range on one of the existing networks, or alternatively add a new AWS native subnet through the Prism Central console.

If NC2 was deployed with Prism Central and Flow Virtual Networking (FVN), the easiest way to do this is to shrink the automatically created “PC-Net” DHCP range to make some space for MST. We shrink ours from ending at “10.110.33.253” to end at “10.110.33.200”. Make sure the no VMs are using addresses in the space you are creating.

SSH or open a console window to Prism Central using the “nutanix” user and enter the below command to start the deployment:

clustermgmt-cli mst deploy \
-b <BUCKET NAME> \
-r <AWS REGION> \
-i <IP#1>,1<IP#2>,<IP#3> \
-s <NC2 NETWORK NAME> \
-t <BUCKET TYPE (aws or ntx_oss)>

For our example we use:

clustermgmt-cli mst deploy \
-b nutanix-clusters-pilotlight-jwr \
-r ap-northeast-1 \
-i 10.110.33.201,10.110.33.202,10.110.33.203 \
-s PC-Net \
-t aws

The MST deployment begins as shown. Enter the AWS access key and secret access key for the user with rights to the S3 bucket when prompted.

Step 5: Link the on-premises Prism Central with the NC2 Prism Central

In Prism Central (on-premises or NC2), navigate to “Administration” and “Availability Zones” and add the other Prism Central instance as a remote physical site.

Step 6: Create a Protection Policy and DR Plan

Through the Prism Central console, navigate to Data Protection and Protection Policies. From here, create a new Protection Policy with the on-premises cluster as source and the Amazon S3 bucket as target.

A replication schedule can be set and allows Linear snapshots for maximum of 36 snapshots or Roll-up where data can be retained for up to one month.

Next we create a Recovery Plan. Optionally, to facilitate grouping of those VMs which are destined for Amazon S3 and those destined to be replicated directly to the NC2 cluster, we create two categories to place them in. Below is the category for the VM group which is to be replicated to S3.

When we then go to Data Protection and Recovery Plans we reference our category to get the correct VMs replicated to the correct location, as follows:

Verifying that data is replicated to S3 + Failing over

Now the replication schedule is set and the target VMs are highlighted through categories to ensure they are replicated. By checking our S3 bucket we can verify that snapshots have been sent to S3 from the on-premises cluster.

We can now do a failover or just a test to see that it is possible to recover from the replicated data. When you do this, since we are failing over from data in S3, make sure to select the target cluster to which we want to recover the VMs. This is done by clicking “+ Add Target Clusters” and selecting the NC2 on AWS cluster as per the below:

You will get a warning highlighting that there may be a need to expand the NC2 on AWS cluster with extra nodes to handle the influx of VMs being restored from S3. If required, simply expand the cluster by adding nodes through the NC2 management console.

After failing over we can verify that our VMs are up and running in NC2 on AWS without issues.

Wrap-up

This has been a guide and demonstration of how easy it is to configure Disaster Recovery using a Pilot Light cluster with NC2 on AWS. Please refer to the links below for more detail in the documentation. Hopefully this has been easy to follow. Please feel free to reach out to your nearest Nutanix representative for more information and guidance for your specific use case and environment.

Links and references

IPアドレスを変更せずにEC2からNC2への移行とAWSの2つのリージョン間でのDRフェイルオーバーを実現

一部のお客様は、AWSでリージョンをまたいだディザスタリカバリ(DR)を必要としていますが、別のリージョンにフェイルオーバーする際にIPアドレスが変更されるという課題に直面することがよくあります。この変更により、DRポリシーで保護されているインスタンス上で実行されているサービスへの外部アクセスが中断される可能性があります。

Nutanix Cloud Clusters (NC2) は、この課題に対応するためのDR機能をビルトインしており、リージョン間でフェイルオーバーする際にもIPアドレスを一貫して維持することができます。さらに、NC2ではCPUのオーバープロビジョニングが可能であるため、NC2への移行後にコンピュートコストを削減できる可能性もあります。ただし、DR中にIPアドレスを保持できるのは、すでにNutanixクラスター上に存在しているワークロードのみであるため、EC2インスタンスは先に移行しておく必要があります。

無料の移行ツールであるNutanix Moveを使用すれば、Amazon EC2からNutanix Cloud Clustersにワークロードを移行することができます。ただし、現時点ではIP保持をサポートしていません。このブログでは、移行中に一貫したIPアドレスを維持するための工夫を紹介しますが、MACアドレスが変更されることには注意してください。その後、NC2はNutanix DRソリューションの一部としてリージョン間フェイルオーバー中にIPアドレスを保持します。それでは始めましょう!

テストで使われていたソフトウエアバージョン

AOS6.10
Prism Centralpc.2024.2

ソリューションアーキテクチャ

この例では、オンプレミスのデータセンター(DC)、DRポリシーでカバーするAWS VPC(別のリージョンにフェイルオーバーしてもIPアドレスが変更されないようにする)にあるEC2インスタンス、そして2つのNC2クラスター(東京リージョンと大阪リージョン)を使用します。この例では、AWSの東京リージョン(ap-northeast-1)をプライマリリージョン、大阪リージョン(ap-northeast-3)をディザスタリカバリの場所として使用します。

オンプレミス環境との接続をDirect Connectで示していますが、このソリューションのテストはすべて各リージョンのTGWに接続されたS2S VPNで行われています。DR間の接続は、クロスリージョンVPCピアリングまたは2つのTransit Gateway (TGW) のピアリングを使用して行うことができます。

ネットワーキング

移行されたEC2インスタンスのIPアドレスを保持するために、Flow Virtual Networking (FVN) を使用して、NC2上にオーバーレイのNATなしオーバーレイネットワークを作成します。このネットワークのCIDR範囲は、EC2インスタンスが接続されている元のサブネットの範囲と一致させます。このオーバーレイネットワークは、東京および大阪のNC2クラスターの両方に作成されます。これにより、VMがフェイルオーバーされても同じCIDR範囲を持つネットワークに接続できます。

オンプレミスDCがこれらのVMにアクセスできるようにするために、プロセス全体でルートテーブルを変更します。これにより、移行されたEC2インスタンスの場所に関係なく、それらを指すルートを維持できます。

Terraform / Open Tofu を使用したVPCとTGWの自動作成

このソリューションを試してみたい場合、VPCやTGW、ルーティングをデプロイするためのTerraform / Open Tofuテンプレートを以下で入手できます:

https://github.com/jonas-werner/aws-dual-region-peered-tgw-with-vpcs-for-nc2-dr

リージョン間接続のためのピアリングタイプの選択

一般的に、以下のように考えられます:

  • VPCピアリング: データ転送コストがやや高いものの、直接的な接続のシンプルさが求められる低トラフィックのシナリオに最適です。
  • TGWピアリング: 高トラフィック環境や複雑なアーキテクチャに適しています。集中管理や低いデータ転送料金が、TGWアタッチメントの追加コストを上回ります。なお、トラフィックは2つのTGWを通過しますが、ピアリングインターフェイスではデータ転送料金は発生しないため、データは1回だけ課金されます(東京リージョンではおおよそ0.02セント/GiB)。

IP保持のための回避策

冒頭で述べたように、Nutanix Move仮想アプライアンスはEC2からNC2への移行に非常に優れていますが、現時点では移行されたワークロードのIPアドレスを保持する機能はありません。この課題を回避するために、以下の手順を実施します:

  1. 移行前
    AWS Systems Manager (SSM) を使用して、移行対象のインスタンス上でPowerShellまたはBashスクリプトを実行します。このスクリプトは、EC2インスタンスのID、ホスト名、およびローカルIPアドレスを取得し、その情報をDynamoDBテーブルに保存します。
  2. 移行中
    Nutanix Moveを使用して、EC2からNC2にインスタンスを移行します。この間にIPアドレスは変更されますが、移行先はEC2インスタンスが接続されていた元のネットワークのCIDR範囲と一致するFVNオーバーレイネットワークです。
  3. 移行後
    DynamoDBに保存した情報をテンプレートとして使用するPythonスクリプトを実行します。このスクリプトは、Nutanix Prism Central APIに接続し、既存のネットワークインターフェイスを削除し、正しい(元の)IPアドレスを持つ新しいインターフェイスを各インスタンスに追加します。

これらの手順を経て、インスタンスがNC2に移行された後は、東京と大阪のリージョン間でのDR設定が簡単に行えるようになります。

このブログに使われているスクリプトは以下の GitHubページからダウンロードできます:

https://github.com/jonas-werner/EC2-to-NC2-with-IP-preservation/tree/main

ステップ1: EC2インスタンスのIPアドレスを取得

このステップでは、EC2からNC2への移行の準備を行います。ネットワーク、ワークロード、および172.30.1.0/24ネットワークへのルートの初期状態は、以下の図の赤い線で示されています。

最初に、EC2インスタンスに関する情報を収集し、その情報をDynamoDBに保存します。効率を重視して、SSM Run Commandを使用してPowerShellスクリプトを実行します。これにより、WindowsおよびLinuxワークロードの両方を1回または2回の操作で簡単に処理できます。この例では、単一のWindows Server 2019 EC2インスタンスをテスト対象として使用します。

まず、この情報を保持するためのDynamoDBテーブルを作成します。このテーブルには特別な要件はなく、SSMがスクリプトを実行する際にアクセスできれば十分です。もちろん、SSMコマンドを実行する際に使用するIAMロールにDynamoDBへのアクセス権を付与する必要があります。そのため、以下のような権限を標準のSSMロールに追加します:

{
    "Sid": "AllowDynamoDBAccess",
    "Effect": "Allow",
    "Action": [
        "dynamodb:PutItem"
    ],
    "Resource": "arn:aws:dynamodb:<your-aws-region>:<your-aws-account>:table/<dynamodb-table-name>"
},

インスタンス名をメタデータから収集するために、EC2コンソールで「インスタンスメタデータにタグを許可」設定を有効化します。この設定は、移行後にNC2でインスタンスを検索する際に「Name」タグをキーとして使用するために重要です。他の方法(たとえばインスタンス名自体を使用する)も可能ですが、このケースではEC2の「Name」タグを使用します。これは、移行後も同じタグがNC2に表示されるためです。

SSM Run Commandを使用して、インスタンス上でスクリプトを実行します。以下のコマンド例を参照してください:

スクリプトの実行後、Windows EC2インスタンスのエントリがDynamoDBに表示されます。これには、インスタンスID、ホスト名、およびIPアドレス(例: 172.30.1.34)が含まれます。このIPアドレスは保持したいアドレスです。

次に、EC2 から NC2 への移行を実行します。

ステップ2: EC2からNC2への移行

次に、EC2からNC2への移行を実施します。この移行では、Nutanix MoveをNC2クラスター上に展開済みである必要があります。また、FVNオーバーレイネットワークを作成しており、そのCIDRはEC2インスタンスが接続されていた元のサブネットと一致していますが、DHCPの範囲は現在そのサブネットで使用されているIPアドレスを避けるよう設定されています。

Moveには、NC2クラスターとAWS環境が移行元および移行先として設定されています。

「Missing Permissions」という警告が表示される場合がありますが、これはAWS IAMポリシーで、EC2への移行を許可していないためです。しかし、EC2からの移行のみを行う場合、この警告は無視して構いません。必要なIAMポリシーの詳細は、Moveのマニュアルをご確認ください。

移行後、VMは異なるIPアドレスを持つようになります(移行先のFVNサブネットのDHCP範囲から取得されます)。

次のステップで、Pythonスクリプトを使用して元のIPアドレスに戻す処理を行います。

ステップ3: EC2インスタンスが元々持っていたIPアドレスに戻す

次に、Pythonスクリプトを実行して、DynamoDBに保存されたインスタンス名を参照し、それをNC2のVM名と照合します。その後、Prism Central APIを使用して既存のネットワークインターフェイスを削除し、新しいネットワークインターフェイスを追加します。この新しいインターフェイスには、元の静的IPアドレスが設定されます。

このスクリプトはGitHubからダウンロードできます。スクリプトを実行するには、Prism Centralのユーザー名とパスワードを環境変数としてエクスポートしてください。また、Prism CentralのIPアドレス、使用するサブネット名、AWSリージョン、DynamoDBテーブル名をお使いの環境に合わせて更新してください。

スクリプトを実行すると、VMが元のIPアドレスを取得したことを確認できます。ただし、このプロセスではNICが置き換えられるため、IPアドレスは同じですが、MACアドレスは変更されています。

EC2からNC2への移行後の東京リージョンでのルーティング

VMがNC2上に存在するようになったため、トラフィックが元のEC2インスタンスではなく、このVMに向かうようルーティングを更新する必要があります。これは、EC2 VPCをTGWから切断し、NC2 VPCを指すようにTGWに静的ルートを追加することで実現します。このサブネットはすでにDXGWの「許可されたプレフィックス」として存在するはずなので、この部分は変更する必要はありません。

赤で強調されたアタッチメントは、172.30.1.0/24サブネットへのアクティブルートを示しており、現在はNC2 VPCを指すように変更されています。このサブネットはFVNのNo-NATサブネットであるため、NC2 VPCのルートテーブルに表示されます。

移行作業のまとめ

これでEC2インスタンスはNC2に移行されました。IPアドレスは保持されており、AWSとオンプレミスDC間のルーティングが更新されたため、オンプレミスのユーザーは、通常通り移行されたインスタンスにアクセスできます。実際、移行のメンテナンスウィンドウ、NC2でのVMの電源オン、およびルーティングの切り替えを除けば、これらのユーザーは元のEC2インスタンスが別のプラットフォームで動作するようになったことに気付くことはほとんどありません

東京と大阪のNC2クラスター間でのDR構成

ここまでで、東京リージョンのNC2クラスターにEC2インスタンスを移行し、IPアドレスを保持した状態でオンプレミス環境と通信できるようになりました。次に行うのは、東京と大阪の2つのNutanixクラスター間で災害復旧(DR)構成を設定することです。DRはNutanixの標準機能として組み込まれているため、この設定は非常に簡単です。Prism Centralインスタンスをリンクし、大阪側でもFVNオーバーレイネットワークを作成して、フェイルオーバー後も同じCIDR範囲を使用できるようにします。

災害復旧機能を有効にした後、Prism Centralを使用してDRプランを簡単に作成できます。

DRプランを作成する際、東京ネットワーク上のVMが大阪DRサイト上の対応するネットワークにフェイルオーバーするように設定します。

最後に、東京のNC2クラスターから大阪のNC2クラスターにVMをフェイルオーバーします。

フェイルオーバー後、VMが大阪で正常に起動していることを確認できるだけでなく、期待通りにIPアドレスが保持されていることも確認できます。

東京から大阪へのルーティング更新

東京から大阪へのフェイルオーバーが完了したら、172.30.1.0/24ネットワークを指すルートを更新し、大阪を指すようにTGWの設定を変更します。これにより、以下のようなネットワーク構成になります。

大阪TGWでは、172.30.0.0/16ネットワークを大阪のNC2 VPCに向けた静的ルートを作成します。

また、東京TGWの静的ルートも更新し、ローカルのNC2 VPCを指すルートを大阪へのピアリング接続に変更します。

結果とまとめ

これらのルーティング変更が適用されることで、オンプレミスのデータセンターからのユーザーは、同じIPアドレスを使用して同じVMにアクセスし続けることが可能になります。この一貫性は、EC2からNC2への移行、および東京リージョンから大阪リージョンへの災害復旧計画に基づいたフェイルオーバー後も維持されます。

このソリューションにより、AWS上で動作していたワークロードがNC2上で動作するようになり、その後もIPアドレスを変更することなく運用を継続できます。これにより、ユーザーにとっての影響を最小限に抑えつつ、DR計画を実現できます。

ぜひこのソリューションを試してみてください。また、この種のソリューションに興味がある場合は、Nutanixの担当者にお問い合わせください。お読みいただきありがとうございました!

リンク

Migrate from EC2 to NC2 and perform DR failover between two AWS regions without changing IP addresses

Some customers require cross-region disaster recovery (DR) in AWS but often face the challenge of changing IP addresses during a failover to another region. This change can disrupt external access to services running on instances covered by the DR policy.

Nutanix Cloud Clusters (NC2) address this challenge with built-in DR functionality that ensures IP addresses remain consistent during failovers between regions. Bonus: It is possible to over-provision CPU on NC2, so it may actually be possible to save on compute costs after the migration to NC2. However it can only retain IP addresses during DR for workloads which are already residing on a Nutanix cluster, so we have to migrate the EC2 instances first.

The free Nutanix Move migration tool can migrate workloads from Amazon EC2 to Nutanix Cloud Clusters, though it currently lacks support for IP retention. In this blog we use some creative workarounds to maintain consistent IPs throughout the migration, although note that MAC addresses will change. NC2 then retains the IPs during regional failovers as part of the Nutanix DR solution. Let’s dive in!

Software versions used during testing

AOS6.10
Prism Centralpc.2024.2

Solution architecture

In this case we have an on-premises datacenter (DC), an AWS VPC with EC2 instances which we want to have covered by a DR policy (so they can fail over to another region without changing IP addresses) and finally two NC2 clusters – one in the primary region and one in a separate region for DR purposes. We use Tokyo (ap-northeast-1) as the primary AWS region and Osaka (ap-northeast-3) as the disaster recovery location in this example.

Overview of solution architecture. Click to embiggen.

We illustrate connectivity to the on-premises environment by using Direct Connect. Note that all the testing of this solution has been done with S2S VPN attached to the TGW’s in each region. Peering between the two DR locations can be done by using cross-region VPC peering or peering of two Transit Gateways (TGW).

Networking

To retain the IP addresses of the migrated EC2 instances we use Flow Virtual Networking (FVN) to create overlay no-NAT overlay networks on NC2 with a CIDR range which matches that of the original subnet the EC2 instances are connected to. We create this overlay network in both Tokyo and Osaka NC2 clusters so that we can later fail over the VMs and have them attach to a network with the same CIDR range.

To ensure the on-premises DC is able to access the VMs we modify the route tables throughout the process. That way we maintain routes which point to the migrated EC2 instances, regardless of where they are located.

Automating the VPC and TGW creation with Terraform / Open Tofu

In the case you’d like to try this out yourself, the Terraform / Open Tofu templates for deploying the VPC’s, TGW’s and the routing for these can be found on GitHub here:

https://github.com/jonas-werner/aws-dual-region-peered-tgw-with-vpcs-for-nc2-dr

When to use which peering type for inter-region connectivity

Generally it can be said that VPC Peering is better for lower traffic scenarios or when the simplicity of direct peering is desirable, despite slightly higher data transfer costs incurred for VPC peering.

TGW Peering is more cost-efficient for high-traffic environments or complex architectures, where the centralized management and lower data transfer rates outweigh the additional costs per TGW attachment. Note that although traffic passes through two TGW’s, the peering interface doesn’t incur data transfer charges so the data is only charged once (roughly 0.02 cents / GiB in the Tokyo region).

The workaround for IP retention

As mentioned in the introduction, while the Nutanix Move virtual appliance is very capable at migrating from EC2 to NC2, it is at time of writing unable to retain the IP addresses of the workloads it migrates. To work around this we do the following:

  1. Prior to the migration we use AWS Systems Manager (SSM) to run a PowerShell or Bash script on the instances to be migrated. The script captures the EC2 instances ID, hostname and local IP address and stores that information into a DynamoDB table for use later
  2. We perform the migration from EC2 to NC2 using Nutanix Move. The IP address will change although we migrate the instance to a Flow Virtual Networking (FVN) overlay network with the same CIDR range as the original network the EC2 instances are connected to.
  3. We run a Python script which uses the DymamoDB information as a template and then connects to the Nutanix Prism Central API. It then removes the existing network interface and adds a new one with the correct (original) IP address to each of the migrated instances.

Once the instances are migrated to NC2 the process of configuring DR between Tokyo and Osaka regions is trivial.

You can download the PowerShell and Python scripts used in this blog on GitHub:

https://github.com/jonas-werner/EC2-to-NC2-with-IP-preservation/tree/main

Step 1: Capture IP addresses of the EC2 instances

In this step we prepare for the migration from EC2 to NC2. The initial state of the network, the workloads and the route to the 172.30.1.0/24 network is as illustrated by the red line in the below diagram.

To start with we gather information about the EC2 instances and store that info in DynamoDB. In the name of efficiency we use the SSM Run command to execute the PowerShell script. This makes it easy to get this done in a single go (or two “goes” if we do both Windows and Linux workloads). We test with a single Windows 2019 Server EC2 instance in this example.

First create a DynamoDB table to hold this information. Nothing special is required for this table as long as it is accessible to SSM as it runs the script. We need to give the IAM role used when running SSM commands access to DynamoDB of course, so we add the following permissions to the standard SSM role:

        {
            "Sid": "AllowDynamoDBAccess",
            "Effect": "Allow",
            "Action": [
                "dynamodb:PutItem"
            ],
            "Resource": "arn:aws:dynamodb:<your-aws-region>:<your-aws-account>:table/<dynamodb-table-name>"
        },

In order to collect the instance name from meta data we enable the “Allow tags in instance metadata” setting in the EC2 console. This is important as we will use the “Name” tag in EC2 as the Key to look up the instance in NC2 post-migration. Of course other methods could be used – most obviously the name of the instance itself. However in this case we use the EC2 name tag, as this is also how the VM will show up in NC2 post migration.

The we execute the script on our instances through the SSM Run command as follows

After execution we can see an entry for our Windows EC2 instance showing its instance ID, hostname and IP address: 172.30.1.34. This is the IP we want to retain.

That’s all for this section. Next we perform the migration from EC2 to NC2.

Step 2: Migrating from EC2 to NC2

For the migration we have deployed Nutanix Move on the NC2 cluster. We have also created an FVN overlay no-NAT network with the same CIDR as the subnet the EC2 instance is connected to, although the DHCP range is set to avoid any of the IPs currently used by instances on that subnet.

Move has the NC2 cluster and the AWS environment added in as migration sources / targets.

It complains about “missing permissions” but this is because we have only given it permission to migrate FROM EC2, not TO EC2. Since that is all we want to do, this is fine. Please refer to the Move manual for details on the AWS IAM policy required depending on your use case.

Post migration the VM will have a different IP address (taken from the DHCP range on the FVN subnet it is connected to).

We use a Python script in the next section to revert the IP address to what it was while running as an EC2 instance.

Step 3: Revert the IP address to match what the EC2 instance had originally

Now we execute a Python script which will look up the instance name in DynamoDB, match it with the VM name in NC2 and then remove and re-create the network interface using the Prism Central API. The new interface will have the original IP configured as a static address.

The script can be downloaded from GitHub here. Please export the Prism Central username and password as environment variables to run the script. Also update the Prism Central IP and the subnet name to match the one used in your environment as well as the AWS region and the DynamoDB table name.

After running the script we can now verify that the VM has received its original IP address. Note that since we have replaced the NIC in this process, the IP is the same as before, but the MAC address will have changed.

Routing after migration from EC2 to NC2 in Tokyo

Now that the VM exists on NC2 we need to update our routing to ensure that traffic is directed to this VM and not the original EC2 instance (which has now been shut down by Move after the migration).

To do this we disconnect the EC2 VPC from the TGW and add the subnet as a static route in the TGW, this time pointing to the NC2 VPC rather than the EC2 VPC. The subnet should already exist as an “Allowed prefix” on the DXGW, so that part can be left as-is.

The attachments highlighted in red shows the active route to the 172.30.1.0/24 subnet, which has now been changed to point to the NC2 VPC. Since the subnet is a FVN no-NAT subnet it will show up in the NC2 VPC route table.

Wrapping up the migration part

Now our EC2 instance has been migrated to NC2. Its IP address is intact and since we have updated the routing between AWS and the on-premises DC, the on-prem users can access the migrated instances just like they normally would. In fact, apart from the maintenance window for the migration, VM power-up on NC2 and the routing switch, they are unlikely to notice that their former EC2 instance is now running on another platform.

Configuring DR between the Tokyo and Osaka NC2 clusters

At this point all we have left to do is set up the DR configuration between the two Nutanix clusters in Tokyo and Osaka. Since DR is a built-in component, this is very straight forward. We link the two Prism Central instances and of course create the FVN overlay network on the Osaka side as well to ensure we can keep the same CIDR range also after failover.

After enabling Disaster Recovery we can easily create the DR plan through Prism Central

When we create the DR plan we set the VMs on the Tokyo network to fail over to its equivalent on the Osaka DR site

Finally we proceed to fail over our VM from NC2 in Tokyo to NC2 in Osaka

After failing over we can confirm that the VM is not only powered up in Osaka, but that it has also retained the IP address, as expected.

Updating the routing to point to Osaka rather than Tokyo

After failing over from Tokyo to Osaka we need to also update the routes pointing to the 172.30.1.0/24 network by modifying the TGW in Osaka. From a diagram perspective it will look like follows.

On the Osaka TGW we create a static route to the 172.30.0.0/16 network pointing to the Osaka NC2 VPC

We also update the static route on the Tokyo TGW which points to the local NC2 VPC and instead set it to point to the peering connection to Osaka

Results and wrap-up

With these routing changes implemented it is now possible for users on the on-premises DC to continue to access the very same VMs with the very same IP addresses. This possible is even after those workloads have been migrated from EC2 to NC2 in Tokyo and then further having been failed over with a DR plan from Tokyo region to Osaka region.

Hope that was helpful! Please reach out to your local Nutanix representative for discussions if this type of solution is of interest. Thank you for reading!

Links

Change NC2 bare-metal node type while the cluster is running

Normally during long car races the drivers enter the pit do change to fresh tires, fill up fuel etc. Metaphorically speaking, Nutanix Cloud Clusters on AWS can change the entire car – without the need for a pit stop. The driver can just keep driving while the bare metal is replaced underneath, as if nothing has happened with the exception of getting more power. All the benefits – none of the downtime. And, it can be done with a single command through the Nutanix MCM portal.

Introduction

In this example we swap out i3.metal nodes to more powerful i4i.metal while the cluster is running. The starting point is a cluster with three i3.metal nodes and the end state is the same cluster, but now with three i4i.metal nodes. The change is seamless for the workloads running on top of NC2. Apart from a few packets dropped during the network change they experience no disruption.

Starting point

We start out with a plain NC2 on AWS cluster with three i3.metal nodes. In addition to the basic cluster components we have also opted to deploy Prism Central and Flow overlay networking.

Multiple VMs are running on the NC2 cluster. To monitor their health we start a continuous ping which statistics can be evaluated after the cluster nodes have been replaced.

On the networking side we have set up No-NAT networking with Flow and as such the subnet the test VM is attached to is accessible also from the native AWS VPC. In this case we are pinging the NC2 test VM from an EC2 instance in a separate AWS VPC.

Updating the Cluster Capacity settings in the Nutanix MCM portal

The management portal for NC2 allows for easy updates to the cluster capacity and configuration. We highlight our cluster and navigate to Cluster Capacity where the node types and the number of nodes can be changed.

A few clicks later we have added three new i4i nodes to our original configuration of three i3 nodes and we have also set the number of i3 nodes to zero. This way we get three new nodes of a more powerful configuration added and after all data has been transferred over, the old cluster nodes will be removed and billing for them stopped.

The task has now been accepted by the MCM portal and is being executed in the background. VMs running on NC2 continue working as usual, unaware of the big changes to the system which are under way.

EC2 bare-metal changes as seen from the AWS console

In the AWS console it is possible to witness the process of the i4i.metal nodes being added, i3 and i4i nodes running at the same time while the cluster shifts to run on the new nodes and finally the decommissioning of the i3.metal nodes.

From a networking perspective: The i3.metal ENI which was the active point of North-South communication for the cluster, and therefore part of the AWS VPC route table, has been shifted to an ENI on one of the new i4i.metal hosts post migration.

Result

The node swap has completed without a hitch and without any need of input from the IT administrator managing the NC2 cluster – well, apart from initiating the change at the start. The entire process took just under one hour to complete:

More importantly, the workloads have experienced just a blip in network connectivity and no downtime or reboots.

The Linux VM which we started pinging at the beginning of the blog post is still up and the pings are still getting through. Throughout the hour-long change a total of 3381 pings were sent. 26 of these were lost (0% loss).

The uptime command on the Linux host also show that there was no rebooting of VMs involved.

Conclusion

This was an example showing of how quick and easy it is to migrate from one EC2 bare metal instance type to another when using Nutanix Cloud Clusters on AWS. For more information, please visit the Nutanix Cloud Clusters page below:

https://www.nutanix.com/products/nutanix-cloud-clusters