Quickly generate the on-prem commands to connect a Mikrotik switch / router running RouterOS to an existing AWS S2S VPN.

Problem statement

For infrequent VPN connectivity between on-prem labs / data centers and AWS it doesn’t make sense to have a permanent VPN connection up 24/7. However, configuring the on-premises Mikrotik router each time is time consuming and error-prone when done manually.

Functionality

This Python script connects to AWS using boto3, reads the details for the first VPN connection it can find and then generates the commands required to set up:

  • Inside IP addresses for the VPN tunnel
  • IPsec proposal settings
  • IPset profile settings
  • IPsec peers
  • IPsec secrets
  • BGP peers
  • BGP networks to advertise
  • Firewall setting
  • etc.

After the commands are generated, simply copy and paste into a Mikrotik CLI window over SSH or similar and the connection will come up in a couple of minutes.

Prerequisites

This script only handles the on-prem side of the connectivity. It assumes the following is already in place at the AWS side:

  • VPC with subnets
  • CGW (Customer Gateway)
  • VGW (Virtual Private Gateway) which is attached to the VPC
  • VPN connection configured to use the VGW and CGW

If you require information on how to set up the AWS-side components, please refer to this blog post: https://jonamiki.com/2022/05/04/mikrotik-vpn-to-aws-vpc/

Script download

Please refer to this GitHub page for the script itself:

https://github.com/jonas-werner/aws-vpn-mikrotik-config-generator/tree/main

Example of running the script

The AWS side has been configured but IPSEC and BGP are both down

Running the script generates the commands required to connect the Mikrotik to AWS

Copy and paste the generated commands into the Mikrotik CLI

After a couple of minutes, IPSEC is up and routes are dynamically shared over BGP

More information

For more information, including how to set up the AWS VPN configuration and a more detailed explanation of the manual steps to configure the Mikrotik router, please refer to this blog post: https://jonamiki.com/2022/05/04/mikrotik-vpn-to-aws-vpc/

Running containerized game servers with EKS Anywhere on Nutanix

Summary

Did you ever wish you could host your own multi-player gaming servers with k8s? In that case I have great news, because in this post we’re covering how to deploy online multi-player game server containers with EKS Anywhere on Nutanix infrastructure.

Components

The game in question is Xonotic, which is a classic, fast-paced, multi-player shooting game based on the Quake engine. To deploy it we use Agones – a platform for running, scaling and orchestrate multi-player gaming containers on k8s.

Agones, in turn, goes on top of EKS Anywhere which runs on a Nutanix cluster. In this case we have deployed a cluster in our Phoenix DC, which is also linked with a Nutanix NC2 cluster on AWS.

Nutanix clusters on-prem in Phoenix and in AWS are managed holistically through the Nutanix Prism Central management console. K8s management is done by registering the EKS Anywhere with the EKS service in AWS. K8s node management is done through SSM or Amazon Systems Manager.

Architecture

The two Nutanix clusters (on-prem and cloud) are linked via a Direct Connect line and can be managed holistically using private networking.

The gaming components are managed through standard the k8s toolset while EKS in the AWS console is used for monitoring of the cluster.

The k8s nodes run as virtual machines on Nutanix and each have the SSM (AWS Systems Manager) agent installed. This makes it possible to monitor the VMs, do patch management and even remote connectivity through the AWS console

Disclaimer: Inventory data from SSM can be sent to an S3 bucket, converted with Athena and then displayed in graphical form through Amazon Quicksight, as is shown to the right in the diagram. This guide doesn’t go through those particular steps, but they are well documented on the Amazon website.

Overview of the architecture both on-prem and in the cloud. Pardon the Japanese script here and there -this was created for a Japanese event after all

The EKS management and SSM connectivity is done to public AWS endpoints in this case, so it goes over the internet. It would also have been possible to do this over private networking through the DX connection, but I don’t have the IAM privileges to create anything new in the account NC2 is running in.

Overview of steps

The following steps will be covered while building the environment

StepGoalTask
1Holistic Nutanix cluster managementPrism Central download and configuration
2Building EKS Anywhere node image #1Download and deploy Ubuntu 22.04 image
3Building EKS Anywhere node image #2Create VM and follow image-builder steps
4EKS Anywhere deploymentRun EKS Anywhere installer from Ubuntu
5k8s cluster managementRegister EKS Anywhere with AWS
6k8s node managementInstall SSM agent on EKS Anywhere nodes
7Game platform orchestrationInstallation of Agones platform
8Game server deploymentCreation of Xonotic pods through Agones
9Good-old fun!Install the Xonotic client and go fragging!

Step 1: Prism Central download and configuration

If not yet deployed, download and deploy Prism Central through the Prism Element UI as per the below.

Once Prism Central has been deployed, reset the admin password over the CLI. SSH to the Prism Central IP using the user “nutanix” and the password “nutanix/4u”. Reset the password using:

ncli user reset-password user-name=admin password=yourpassword

On each cluster, register with Prism Central through the Prism Element UI. Once registered, the clusters show up in Prism Central as per the below

Step 2: Download and deploy Ubuntu 22.04 image

From the Ubuntu website, copy the URL to the Ubuntu image (Jammy Jellyfish) from here:

https://cloud-images.ubuntu.com/releases/22.04/release/

Be sure to pick the ubuntu-22.04-server-cloudimg-amd64.img and not the disk-kvm image as the kvm image won’t boot.

Add it as a DISK image from URL in the Nutanix web UI:

Step 3: Create VM and follow image-builder steps

Use the image to create a new Ubuntu VM.

  • I used 2 CPUs with 2 cores each and 8 Gb of RAM.
  • Delete the CD-ROM drive
  • Add a NIC.
  • Set the disk to clone from the image created above
  • Set boot mode to UEFI rather than the default BIOS.

When given the option to add a Custom Script, add a cloud init snippet as per the below to enable SSH (with password rather than key) and set your password

#cloud-config
password: vrySekrPaswd1%
chpasswd: { expire: False }
ssh_pwauth: True

Disk update: You’ll note that the disk created from the image is very small – just 2.2 Gb. Changing the disk size during VM creation isn’t supported, but it can be made larger afterwards. Just accept the size for now and update the disk size once the VM shows up in the inventory. I set mine to 50 Gb.

Don’t start the VM just yet. First we want to add a serial port to the VM through the Nutanix CLI. SSH to any CVM in the cluster and issue the below command:

acli vm.serial_port_create <VM_NAME> index=0 type=kNull

In my case that looks like

nutanix@NTNX-16SM6B260127-C-CVM:10.11.22.31:~$ acli vm.serial_port_create ubuntu-k8s-image-builder index=0 type=kNull
VmUpdate: pending
VmUpdate: complete
nutanix@NTNX-16SM6B260127-C-CVM:10.11.22.31:~$

Now we can power on the VM and log in over SSH using the password set through the cloud init script.

For the image creation, there are official instructions from AWS here. However, I found that some of the official steps needed to be modified to work. Please refer to the below if you want to do the same as I used when creating the image:

As user “ubuntu” on the image-builder VM:

sudo adduser image-builder
sudo usermod -aG sudo image-builder
sudo su - image-builder

Now we have switched to the “image-builder” user and continue the process:

sudo apt install python3-pip -y
pip3 install --user ansible-core==2.15.9
export PATH=$PATH:/home/image-builder/.local/bin
cd /tmp
BUNDLE_MANIFEST_URL=$(curl -s https://anywhere-assets.eks.amazonaws.com/releases/eks-a/manifest.yaml | yq ".spec.releases[] | select(.version==\"$EKSA_RELEASE_VERSION\").bundleManifestUrl")
IMAGEBUILDER_TARBALL_URI=$(curl -s $BUNDLE_MANIFEST_URL | yq ".spec.versionsBundles[0].eksD.imagebuilder.uri")
curl -s $IMAGEBUILDER_TARBALL_URI | tar xz ./image-builder
sudo install -m 0755 ./image-builder /usr/local/bin/image-builder
cd

Now a “which image-builder” should show the binary installed in /usr/local/bin as per the below

image-builder@ubuntu:~$ which image-builder
/usr/local/bin/image-builder

Also, a “which ansible” should show it installed in the local user directory as follows:

image-builder@ubuntu:~$ which ansible
/home/image-builder/.local/bin/ansible

image-builder@ubuntu:~$ ansible --version
ansible [core 2.15.9]

Now we create the “nutanix.json” file to enable image-builder to use our Prism Central to create our k8s image

cat > nutanix.json
{
  "nutanix_cluster_name": "YOUR-CLUSTER-NAME",
  "nutanix_subnet_name": "YOUR-SUBNET",
  "nutanix_endpoint": "PRISM-CENTRAL-IP",
  "nutanix_insecure": "true",
  "nutanix_port": "PRISM-CENTRAL-PORT (DEFAULT 9440)",
  "nutanix_username": "admin",
  "nutanix_password": "PRISM-CENTRAL-PASSWORD"
}

Now we are ready to execute image-builder and create the image. In this case we create an image for version 1.28. This will take around 10 minutes to complete

image-builder build --os ubuntu --hypervisor nutanix --release-channel 1-28 --nutanix-config nutanix.json

Once complete you should be greeted with the following message:

In the list of images in Prism, the new k8s image will show up as follows

Step 4: EKS Anywhere deployment

Now we have an image and are ready to start deploying EKS Anywhere …. well, almost. First we create a configuration file which then is used as the template for the deployment.

Install Docker:

Official instructions can be found here: https://docs.docker.com/engine/install/ubuntu/

After the install, add the “image-builder” user to the docker group so we can use docker without “sudo”

sudo usermod -aG docker image-builder

Log out and back in again for the group change to take effect, then test as follows

image-builder@ubuntu:~$ docker ps -a
CONTAINER ID   IMAGE     COMMAND   CREATED   STATUS    PORTS     NAMES

Install eksctl, eksctl-anywhere and kubectl

Official instructions can be found here: https://anywhere.eks.amazonaws.com/docs/getting-started/install/

Create a cluster-config.yaml file

eksctl anywhere generate clusterconfig AWESOME-CLUSTER-NAME --provider nutanix > cluster-config.yaml

Edit the cluster-config.yaml file to adjust to your local environment

Update the cluster-config.yaml file created in the previous step to point to the Prism Central environment you’d like to use. For a lab environment you may also want to disable TLS certificate check. Official instructions for how to modify the file are listed here.

The entire file is too long to upload here, but the fields I’ve modified are:

KeyValue
controlPlaneConfiguration.count3
controlPlaneConfiguration.endpoint.hostFloating IP to use for control plane VM
kubernetesVersion1.28 (to match with the image built)
workerNodeGroupConfigurations.count3
spec.endpointPrism Central IP / FQDN
spec.insecuretrue (spec.insecure is a new entry)
spec.cluster.namePrism Element cluster name
spec.image.nameName of k8s image created earlier
spec.subnet.nameName of subnet to use for k8s nodes
spec.users.name.sshAuthorizedKeysCopy and paste your RSA SSH key here

Quick screenshot showcasing the addition of the “spec.insecure” parameter for lab clusters without a valid SSH/TLS cert:

Deploying the cluster

First export the credentials to Prism Central as per the below:

image-builder@ubuntu:~$ export EKSA_NUTANIX_USERNAME="admin"
image-builder@ubuntu:~$ export EKSA_NUTANIX_PASSWORD="PRISM-CENTRAL-PWD"

Now are are ready to deploy with the cluster-config.yaml file as our template

eksctl anywhere create cluster -f cluster-config.yaml

After a successful deployment, the below will be shown:

Get the credentials for your cluster

export KUBECONFIG=${PWD}/YOUR-CLUSTER-NAME/YOUR-CLUSTER-NAME-eks-a-cluster.kubeconfig

List the k8s nodes and their IP addresses

kubectl get nodes -o wide

Step 5: Register EKS Anywhere with AWS

First we need the aws cli installed and configured with an access key and a secret access key

sudo apt install awscli

Then configure with your credentials

aws configure

Generate the EKS connector configuration files

eksctl register cluster --name YOUR-CLUSTER-NAME --provider EKS_ANYWHERE --region YOUR-REGION

This will generate three yaml files like so

image-builder@ubuntu:~/EKS-A$ ls -1
eks-connector-clusterrole.yaml
eks-connector-console-dashboard-full-access-group.yaml
eks-connector.yaml
image-builder@ubuntu:~/EKS-A$

Then apply the configuration files with kubectl

kubectl apply -f CONFIG-FILE

Access the AWS console, navigate to Amazon Elastic Kubernetes Service and verify that the cluster shows up as it should. Ensure you are in the region you selected when generating the yaml config files

Click the cluster name , go to the Resources tab and select Pods. Here you filter to find the Xonotic game pods as per the below

Step 6: Install SSM agent on EKS Anywhere nodes

With the AWS Systems Manager agent installed, it is possible to monitor the k8s cluster nodes, get their software inventory, do patch management, remote access and various other things

The first thing we do is to create a managed node activation in the AWS Console. Navigate to Systems Manager and select Hybrid Activations. Be sure to pick the right region.

Save the resulting activation details as they are used when registering installing the SSM agent and registering the the k8s nodes

For the agent installation and registration, please follow the official guide here:

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-install-managed-linux.html

Once the agent is installed and registered, the nodes will show up in SSM as per the below

Step 7: Installation of Agones platform

First of all, install helm so we can use helm charts

sudo snap install helm --classic

Add the Agones repo, update and install

helm repo add agones https://agones.dev/chart/stable
helm repo update
helm install v1.38.0 --namespace agones-system --create-namespace agones/agones

Verify the Agones install by listing the pods

kubectl --namespace agones-system get pods -o wide

Step 8: Creation of Xonotic pods through Agones

Now when we have the Agones game orchestration platform running, all we need to do is to deploy the actual game containers into it thusly

kubectl apply -f https://raw.githubusercontent.com/googleforgames/quilkin/main/examples/agones-xonotic-sidecar/sidecar.yaml

We can now list the game servers

kubectl get gameservers

Step 9: Install the Xonotic client and go fragging!

The Xonotic game client is available for download here:

https://xonotic.org/download/

Mac users on Apple silicon can install the client with Brew

brew install xonotic

Start the client, select multi-player and add the IP and port of your game server

Play the game!

Closing

This has been a somewhat lengthy guide on configuring k8s on top of Nutanix with the intent of running containerized game servers. Hopefully it has been informative. Originally I wanted to expand the section on SSM and other features on managing the cluster through AWS but thought this blog post was long enough already. Perhaps those areas will be worth re-visiting later on if there’s interest.

Happy Fragging!

Links and References

  • https://cloud-images.ubuntu.com/releases/22.04/release/
  • https://portal.nutanix.com/page/documents/kbs/details?targetId=kA00e000000CshJCAS
  • https://image-builder.sigs.k8s.io/capi/providers/nutanix.html
  • https://anywhere.eks.amazonaws.com/docs/osmgmt/artifacts/#building-node-images
  • https://anywhere.eks.amazonaws.com/docs/getting-started/nutanix/
  • https://anywhere.eks.amazonaws.com/docs/getting-started/nutanix/nutanix-spec/
  • https://devopscube.com/eks-anywhere-cluster/
  • https://googleforgames.github.io/quilkin/main/book/quickstarts/agones-xonotic-sidecar.html

Configuring AWS Systems Manager for use with VMware Cloud on AWS

Maintaining tight access control for workloads and ensuring they are on the latest patch revisions is central to running an efficient and secure IT environment. In this post we cover how to heighten security by leveraging the tools which comes with AWS Systems Manager and complementing AWS native services. This way IT administrators will be empowered with tools central to their quest of reaching higher security levels while simultaneously being able to reduce management overhead

This post is also available on AWS Re-post here: https://repost.aws/articles/ARRpq-n–pQSKwWteAIdpktw

Integrating AWS Systems Manager (SSM) with VMware Cloud on AWS

Deploying SSM can help enhance security for both cloud native and VMware Cloud on AWS environments. This post will show how to integrate SSM with VMware Cloud on AWS for secure remote access as well as security patching of VMs.

Detailed configuration steps are covered below, but the main points are:

  • Enabling and performing initial SSM configuration
  • Creating a VPC endpoint for SSM in the VMware Cloud on AWS connected VPC
  • Creating an inbound endpoint for Route 53
  • Install the SSM agent and registering the VMs with SSM

The SSM endpoint gives the VMs a private IP to communicate with SSM and the Route 53 inbound endpoint ensures that the VMs receive that private IP when they resolve the SSM FQDN. Without these two endpoints the VMs would communicate with SSM over the internet.

Architecture

Integrating AWS Systems Manager with VMware Cloud on AWS is relatively straightforward. While AWS SSM comes with public endpoints for VM-to-SSM communication, the preferred way is to use private IP addressing over the connected VPC Elastic Network Interface (ENI). To accomplish this, create an SSM endpoint in the connected VPC and then set the networks on the VMware Cloud on AWS SDDC CGW to use a Route 53 inbound resolver. That way any communication the SSM agent does to the regional SSM endpoint will go over the ENI rather than the internet. No changes on the VMs are required apart from ensuring they use the correct Route 53 DNS resolver.

Overall network architecture for AWS Systems Manager integration with VMware Cloud on AWS

Integrating AWS Systems Manager for the VMware Cloud on AWS environment involves creating an SSM endpoint in the customer connected VPC and adding a DNS inbound endpoint

Full diagram: https://d1.awsstatic.com/architecture-diagrams/ArchitectureDiagrams/vmware-hybrid-cloud-mgmt-aws-systems-manager.pdf?did=wp_card&trk=wp_card

Configuration steps

In this section the practical setup of AWS Systems Manager with VMware Cloud on AWS is covered. General guidelines for getting started with AWS Systems Manager is covered in the SSM User Guide. The steps below are VMware and VMware Cloud on AWS specific and aim to get an environment up and running swiftly.

Overview of steps involved in setting up Systems Manager for use with VMware Cloud on AWS

  1. Setting the systems manager region
  2. Creating an S3 bucket for SSM logs and inventory output
  3. Creating the S3 bucket policy in IAM
  4. Creating the systems manager IAM users
  5. Creating the systems manager VPC endpoints
  6. Creating the R53 DNS inbound endpoint
  7. Pointing CGW DNS to R53
  8. Creating the SDDC firewall rules
  9. Creating a hybrid activation
  10. VM configuration: Installing the SSM agent and registering with SSM

1. Setting the systems manager region and enable Advanced-Tier

AWS Systems Manager is bound to a region of choice when activated the first time. Please pick a region which makes sense to your organization and note that it cannot be changed afterwards. For a VMware Cloud on AWS environment this would usually be the same region as the VMware Cloud on AWS environment is deployed in.

The easiest way to set the region is to go to AWS Systems Manager Quick Start and select your preferred region during the setup. Access AWS Systems Manager Console here: https://console.aws.amazon.com/systems-manager/ Also refer to the AWS Systems Manager getting started guide here: https://docs.aws.amazon.com/systems-manager/latest/userguide/quick-setup-getting-started.html

To use advanced features of AWS SSM, like patch management of VMware VMs, Advanced-Tier has to be enabled. This will incur an extra charge for instance management. At the time of writing the daily cost for one instance would be $0.1668 USD. Please refer to the SSM pricing structure for more detail and up-to-date pricing.

Once AWS SSM has been set to your preferred region, access “Fleet Manager” and under “Account management” select to modify the settings for Instance tiers.

Under the “Instance tier settings” confirm change from Standard-Tier to Advanced-Tier

2. Creating an S3 bucket for SSM logs and inventory output

Having a designated S3 bucket for SSM logs and other output, like inventory data, makes administration easier. The output can later be accessed for tracking, troubleshooting or even for access via Athena where inventory data can be formatted using SQL queries and used in QuickSight reports.

3. Creating the S3 bucket policy in IAM

The S3 bucket created in step 2 need a policy to allow SSM to access it. This policy will be created in IAM and then attached to the IAM roles used in both cloud native and VMware Cloud on AWS environments. Note that while this is a policy for S3 access, it is created in IAM and not in the S3 console.

The policy is created based on the JSON document below. Please update “YOUR-REGION” and “YOUR-BUCKET-NAME” with the relevant values for your environment.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:GetObject",
            "Resource": [
                "arn:aws:s3:::aws-ssm-YOUR-REGION/",
                 "arn:aws:s3:::aws-windows-downloads-YOUR-REGION/",
                "arn:aws:s3:::amazon-ssm-YOUR-REGION/",
                "arn:aws:s3:::amazon-ssm-packages-YOUR-REGION/",
                "arn:aws:s3:::YOUR-REGION-birdwatcher-prod/",
                 "arn:aws:s3:::aws-ssm-distributor-file-YOUR-REGION/",
                "arn:aws:s3:::aws-ssm-document-attachments-YOUR-REGION/",
                 "arn:aws:s3:::patch-baseline-snapshot-YOUR-REGION/"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [
                "s3:GetObject",
                "s3:PutObject",
                "s3:PutObjectAcl",
                "s3:GetEncryptionConfiguration"
            ],
            "Resource": [
                "arn:aws:s3:::YOUR-BUCKET-NAME/*",
                "arn:aws:s3:::YOUR-BUCKET-NAME"
            ]
        }
    ]
}

4. Creating the systems manager IAM roles

AWS Systems Manager can cover the management of both EC2 instances as well as VMware Cloud on AWS VMs. Each of these instance / VM types require a role created for them in IAM. This is to give the instance / VM the ability to interact with SSM and vice-versa. Detailed steps for this is covered in the AWS SSM user guide. In this section we will cover how to quickly get the VMware Cloud on AWS VM role created for use with hybrid activations in SSM.

Navigate to IAM in the AWS Console and create a new role. Select “Trusted entity type” to be “AWS Service” and the “Use Case” to be “Systems Manager”.

Under Permissions, search for and select the following:

  • CloudWatchAgentServerPolicy
  • AmazonSSMDirectoryServiceAccess
  • AmazonSSMManagedInstanceCore
  • The policy previously created for the SSM S3 bucket

5. Creating the systems manager VPC endpoints

Endpoints for AWS SSM can be created in the VMware Cloud on AWS Connected VPC. This is to provide the VMs in VMware Cloud on AWS a path to communicate with AWS SSM via the connected VPC ENI rather than accessing AWS SSM over the internet. This is both secure and as long as the SSM endpoint in the connected VPC is in the same availability zone as the VMware Cloud on AWS SDDC, communication is free of charge.

Create endpoints for the SSM service and, optionally, also KMS, Logs and SSM messages services as per the below:

6. Creating the R53 DNS inbound endpoint

Creating the SSM endpoint is the first step but the VMs in VMware Cloud on AWS must also be directed to that endpoint rather than the public SSM IP addresses. Rather than modifying each VM, a more efficient way is to add a Route 53 inbound endpoint to the Connected VPC. If the CGW DHCP server for the VMware Cloud on AWS VM segments is then updated to point DNS to that Route 53 endpoint, the VMs will automatically resolve the SSM FQDN to the endpoint private IP address.

Make sure that the security group for the inbound R53 endpoints allow DNS on both TCP and UDP from the VMware Cloud on AWS CGW network segments.

7. Pointing CGW DNS to R53

In the VMware Cloud on AWS console, navigate to “Networking & Security” and select “Segments” under Network. Update the network segments for the VMs to use the R53 inbound endpoint IP addresses.

The VMs connected to the CGW network segment may need to be disconnected and then re-connected to the network in vCenter or restart the networking from the OS side for the changes to take effect.

Before changing the DNS to point to the R53 inbound endpoint the VM in VMware Cloud on AWS resolves the regional SSM endpoint to the public IP address. Communication is done via the IGW in the VMware Cloud on AWS environment.

After updating the DNS the VM resolves the SSM endpoint to the private endpoint created earlier. Communication is over the Connected VPC ENI. Note: The ping doesn’t succeed since the security group for SSM blocks ICMP. However, the command shows that the VM correctly resolves the regional SSM endpoint to the private IP address in the Connected VPC.

8. Creating the SDDC firewall rules

The network segments connected to the VMware Cloud on AWS CGW router need access to both SSM and R53 services in the Connected VPC. AWS SSM also need to be able to access the VMware Cloud on AWS VMs over the Connected VPC ENI. Create firewall rules on the CGW to allow this traffic. In the screenshot below the VMware Cloud on AWS VM network “cgw-53” is allowed to communicate anywhere over any uplink while inbound traffic to the same network is allowed over the VPC interface only.

9. Creating a hybrid activation

Virtual machines external to EC2 are added to AWS SSM through a “Hybrid activation”. This is created via the SSM section of the AWS Console and generates an ID and a code for a preset number of VMs. These can be used as credentials in the next step where the SSM agent is installed and the VMs are registered with SSM

10. VM configuration: Installing the SSM agent and registering with SSM

Instances on EC2 normally come with the SSM agent pre-installed. For VMs in VMware Cloud on AWS or on-premises VMware environments the agent needs to be installed. This is both quick and easy to do. The details for agent installation for a multitude of OS types are described in the SSM user guide. In this example the agent will be installed on a Linux VM. Instructions for Windows VMs can be found here.

After downloading and installing the agent, the Hybrid Activation code and ID from step 9 above are used to register the VM with AWS SSM

Verifying that the VM is available in Systems Manager. Note that in contrast from EC2 instances, the VMware Cloud on AWS VM is prefixed with an “mi-” rather than just an “i-”. This is an indication it is a Managed Instance external to EC2. Of course labels and groups can also be used to keep the managed nodes apart, but the Node ID is a quick indicator of where it comes from.

Managing the VMs in Systems Manager

Viewing the VM inventory

Once the AWS SSM agent is installed it will start collecting the software inventory of the VM. This data is available through the SSM Inventory console but can also be exported to S3 for further processing by Athena. Detailed reports can be created by pointing QuickSight to the Athena data.

Accessing VM registry, logs and filesystem

The VM filesystem, performance metrics, system logs and even registry for Windows VMs is accessible directly through the AWS Console for each VM registered with SSM. Administering the VMs though the AWS Console reduces the need for direct desktop or shell access. For some features, like performance metrics, please be sure to enable KMS encryption in the SSM general settings.

Accessing the VM PowerShell console

While PowerShell or a shell prompt on a VM can be accessed over RDP or SSH, having the ability to quickly connect to a VM console through SSM helps streamline system administration.

Accessing the VM desktop

For Windows VMs it is possible to quickly open an RDP session even though the firewall on the VM is enabled and blocking RDP. The SSM agent creates a loopback connection which enables access from the AWS console. Up to four sessions can be opened in a single SSM Session Manager window. The session window can be maximized to view the VM in full screen

Patching VMs

Through SSM Patch manager, patch baselines and maintenance windows can easily be created and applied to the managed VMware VMs as well as EC2 instances to ensure they are up to date and have the highest level of protection possible

Conclusion

VMware Cloud on AWS is not a standalone solution but integrates well with a variety of AWS native services. In this blog post AWS Systems Manager and related services were leveraged to enhance security of VMs running on VMware Cloud on AWS by centralizing access controls and automating OS patch management.

Further reading

Migrating VMs from on-premises vSphere to VMware Cloud on AWS using NetApp SnapMirror

Note: This blog post is part of the 2022 edition of the vExpert Japan Advent Calendar series for the 9th of December.

Migration from an on-premises environment to VMware Cloud on AWS can be done in a variety of ways. The most commonly used (and also recommended) method is Hybrid Cloud Extensions – HCX. However, if VMs are stored on a NetApp ONTAP appliance in the on-prem environment, the volume the VMs reside on can easily be copied to the cloud using SnapMirror. Once copied, the volume can be mounted to VMware Cloud on AWS and the VMs imported. This may be a useful method of migration provided some downtime is acceptable.

Tip: If you are just testing things out, NetApp offers a downloadable virtual ONTAP appliance which can be deployed with all features enabled for 60 days.

Prerequisites

  • Since SnapMirror is a licensed feature, please make sure a license is available on the on-prem environment. FSx for NetApp ONTAP includes SnapMirror functionality
  • SnapMirror only works between a limited range of ONTAP versions. Verify that the on-prem array is compatible with FSxN. The version of FSxN at the time of writing is “NetApp Release 9.11.1P3”. Verify your version (“version” command from CLI) and compare with the list for “SnapMirror DR relationships” provided by NetApp here: https://docs.netapp.com/us-en/ontap/data-protection/compatible-ontap-versions-snapmirror-concept.html#snapmirror-synchronous-relationships
  • Ensure the FSxN ENIs have a security group assigned allowing ICMP and TCP (in and outbound) on ports 11104 and 11105

Outline of steps

  1. Create an FSx for NetApp ONTAP (FSxN) file system
  2. Create a target volume in FSxN
  3. Set up cluster peering between on-prem ONTAP and FSxN
  4. Set up Storage VM (SVM) peering between on-prem ONTAP and FSxN
  5. Configure SnapMirror and Initialize the data sync
  6. Break the mirror (we’ll show deal with the 7 years of bad luck in a future blog post)
  7. Add an NFS mount point for the FSxN volume
  8. Mount the volume on VMware Cloud on AWS
  9. Import the VMs into vCenter
  10. Configure network for the VMs

Architecture diagram

The peering relationship between NetApp ONTAP on-prem and in FSxN requires private connectivity. The diagram shows Direct Connect, but a VPN terminating at the TGW can also be used

Video of the process

This video shows all the steps outlined previously with the exception of creating the FSxN file system – although that is a very simple process and hardly worth covering in detail regardless

Commands

Open SSH sessions to both the on-premises ONTAP array and FSxN. The FSxN username will be “fsxadmin”. If not known, the password can be (re)set through the “Actions” menu under “Update file system” after selecting the FSxN file system in the AWS Console.

Step 1: [FSxN] Create the file system in AWS

The steps for this are straight-forward and already covered in detail here: https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/getting-started-step1.html

Step 2: [FSxN] Create the target volume

Note that the volume is listed as “DP” for Data Protection. This is required for SnapMirror.

FsxId0e4a2ca9c02326f50::> vol create -vserver svm-fsxn-multi-az-2 -volume snapmirrorDest -aggregate aggr1 -size 200g -type DP -tiering-policy all
[Job 1097] Job succeeded: Successful

FsxId0e4a2ca9c02326f50::>
FsxId0e4a2ca9c02326f50::>
FsxId0e4a2ca9c02326f50::> vol show
Vserver   Volume       Aggregate    State      Type       Size  Available Used%
--------- ------------ ------------ ---------- ---- ---------- ---------- -----

svm-fsxn-multi-az-2
          onprem_vm_volume_clone
                       aggr1        online     RW         40GB    36.64GB    3%
svm-fsxn-multi-az-2
          snapmirrorDest
                       aggr1        online     DP        200GB    200.0GB    0%
svm-fsxn-multi-az-2
          svm_fsxn_multi_az_2_root
                       aggr1        online     RW          1GB    972.1MB    0%
8 entries were displayed.

FsxId0e4a2ca9c02326f50::>
FsxId0e4a2ca9c02326f50::>

Step 3a: [On-prem] Create the cluster peering relationship

Get the intercluster IP addresses from the on-prem environment

JWR-ONTAP::> network interface show -role intercluster
            Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
JWR-ONTAP
            Intercluster-IF-1
                         up/up    10.70.1.121/24     JWR-ONTAP-01  e0a     true
            Intercluster-IF-2
                         up/up    10.70.1.122/24     JWR-ONTAP-01  e0b     true
2 entries were displayed.

Step 3b: [FSxN] Create the cluster peering relationship

FsxId0e4a2ca9c02326f50::> cluster peer create -address-family ipv4 -peer-addrs 10.70.1.121, 10.70.1.122

Notice: Use a generated passphrase or choose a passphrase of 8 or more characters. To ensure the authenticity of the peering relationship, use a phrase or sequence of characters that would be hard to guess.

Enter the passphrase:
Confirm the passphrase:

Notice: Now use the same passphrase in the "cluster peer create" command in the other cluster.

FsxId0e4a2ca9c02326f50::> cluster peer show
Peer Cluster Name         Cluster Serial Number Availability   Authentication
------------------------- --------------------- -------------- --------------
JWR-ONTAP                 1-80-000011           Available      ok

Step 3c: [FSxN] Create the cluster peering relationship

Get the intercluster IP addresses from the FSxN environment

FsxId0e4a2ca9c02326f50::> network interface show -role intercluster
            Logical    Status     Network            Current       Current Is
Vserver     Interface  Admin/Oper Address/Mask       Node          Port    Home
----------- ---------- ---------- ------------------ ------------- ------- ----
FsxId0e4a2ca9c02326f50
            inter_1      up/up    172.16.0.163/24    FsxId0e4a2ca9c02326f50-01
                                                                   e0e     true
            inter_2      up/up    172.16.1.169/24    FsxId0e4a2ca9c02326f50-02
                                                                   e0e     true
2 entries were displayed.

Step 3d: [On-prem] Create the cluster peering relationship

Use the same passphrase as when using the cluster peer create command on the FSxN side in Step 3b

JWR-ONTAP::> cluster peer create -address-family ipv4 -peer-addrs 172.16.0.163, 172.16.0.163

Step 4a: [FSxN] Create the Storage VM (SVM) peering relationship

FsxId0e4a2ca9c02326f50::> vserver peer create -vserver svm-fsxn-multi-az-2 -peer-vserver svm0 -peer-cluster JWR-ONTAP -applications snapmirror -local-name onprem

Info: [Job 145] 'vserver peer create' job queued

Step 4b: [On-prem] Create the Storage VM (SVM) peering relationship

After the peer accept command completes, verify the relationship using “vserver peer show-all”.

JWR-ONTAP::> vserver peer accept -vserver svm0 -peer-vserver svm-fsxn-multi-az-2 -local-name fsxn-peer

Step 5a: [FSxN] Create the SnapMirror relationship

FsxId0e4a2ca9c02326f50::> snapmirror create -source-path onprem:vmware -destination-path svm-fsxn-multi-az-2:snapmirrorDest -vserver svm-fsxn-multi-az-2 -throttle unlimited
Operation succeeded: snapmirror create for the relationship with destination "svm-fsxn-multi-az-2:snapmirrorDest".

FsxId0e4a2ca9c02326f50::> snapmirror show
                                                                       Progress
Source            Destination Mirror  Relationship   Total             Last
Path        Type  Path        State   Status         Progress  Healthy Updated
----------- ---- ------------ ------- -------------- --------- ------- --------
onprem:vmware
XDP  svm-fsxn-multi-az-2:snapmirrorDest
Uninitialized
Idle           -         true    -

Step 5b: [FSxN] Initialize the SnapMirror relationship

This will start the data copy from on-prem to AWS

FsxId0e4a2ca9c02326f50::> snapmirror initialize -destination-path svm-fsxn-multi-az-2:snapmirrorDest -source-path onprem:vmware
Operation is queued: snapmirror initialize of destination "svm-fsxn-multi-az-2:snapmirrorDest".

FsxId0e4a2ca9c02326f50::> snapmirror show
                                                                     Progress
Source            Destination Mirror  Relationship   Total             Last
Path        Type  Path        State   Status         Progress  Healthy Updated
----------- ---- ------------ ------- -------------- --------- ------- --------
onprem:vmware
          XDP  svm-fsxn-multi-az-2:snapmirrorDest
                            Uninitialized
                                    Transferring   0B        true    09/20 08:55:05

FsxId0e4a2ca9c02326f50::> snapmirror show
                                                                     Progress
Source            Destination Mirror  Relationship   Total             Last
Path        Type  Path        State   Status         Progress  Healthy Updated
----------- ---- ------------ ------- -------------- --------- ------- --------
onprem:vmware
          XDP  svm-fsxn-multi-az-2:snapmirrorDest
                            Snapmirrored
                                    Finalizing     0B        true    09/20 08:58:46

FsxId0e4a2ca9c02326f50::> snapmirror show
                                                                     Progress
Source            Destination Mirror  Relationship   Total             Last
Path        Type  Path        State   Status         Progress  Healthy Updated
----------- ---- ------------ ------- -------------- --------- ------- --------
onprem:vmware
          XDP  svm-fsxn-multi-az-2:snapmirrorDest
                            Snapmirrored
                                    Idle           -         true    -

FsxId0e4a2ca9c02326f50::>

Step 6: [FSxN] Break the mirror

FsxId0e4a2ca9c02326f50::> snapmirror break -destination-path svm-fsxn-multi-az-2:snapmirrorDest
Operation succeeded: snapmirror break for destination "svm-fsxn-multi-az-2:snapmirrorDest".

Step 7: [FSxN] Add an NFS mount point for the FSxN volume

FsxId0e4a2ca9c02326f50::> volume mount -volume snapmirrorDest -junction-path /fsxn-snapmirror-volume

Step 8: [VMC] Mount the FSxN volume in VMware Cloud on AWS

Step 9: [VMC] Import the VMs into vCenter in VMware Cloud on AWS

This can be done manually as per the screenshot below, or automated with a script

Manual import of VMs from the FSxN volume into VMware Cloud on AWS

Importing using a Python script (initial release – may have rough edges): https://github.com/jonas-werner/vmware-vm-import-from-datastore/blob/main/registerVm.py

Video on how to use the script can be found here:

Step 10: [VMC] Configure the VM network prior to powering on

Wrap-up

That’s all there is to migrating VMs using SnapMirror between on-prem VMware and VMware Cloud on AWS environments. Hopefully this has been useful. Thank you for reading!

日本VMUGミーティングのプレゼン

11月29日日本VMUG(VMware User Group)ミーティングでプレゼンしました。タイトルは:”塩漬け OS を如何に保護するか、VMware Cloud on AWS の仮想マシンのセキュリティを高めるには – Jonas Werner”でした。録画は以下になります。

他のセッションもいっぱいありました。もし興味ありましたらそこのレコーディングもご覧ください:https://github.com/gowatana/japan-vmug-vexpert-talks/blob/main/README.md#21-2022%E5%B9%B411%E6%9C%8829%E6%97%A5%E7%81%AB1800—2000-recording-playlist